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We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear wave-
guide arrays. The families of unstaggered odd, even, and twisted stationary solutions are thoroughly charac-
terized and their stability against perturbations is investigated. We show that the twisted and even solitons
display instability, while most of the odd solitons show remarkable stability upon evolution.

DOI: 10.1103/PhysRevE.70.066618 PACS number(s): 42.65.Tg, 42.65.Wi, 42.79.Gn

I. INTRODUCTION

Since their first experimental observation[1], quadratic
solitons have been demonstrated in a variety of materials and
geometries. Spatial, temporal, and spatiotemporal solitons in
quadratic media have been extensively investigated both ex-
perimentally and theoretically(for detailed reviews, see
[2–5]). Quadratic solitons also exist in the form of discrete
entities, namely strongly localized wave packets forming in
nonlinear waveguide arrays. Since their theoretical predic-
tion in 1988 in cubic nonlinear media[6], discrete optical
solitons have attracted a steadily growing interest because of
their potential applications in switching and routing devices
[7–9]. The discrete solitons that form in tight-coupled wave-
guide arrays made of quadratic nonlinear media have been
comprehensively investigated[10–14] due to the rich variety
of effects that are possible with them. It is noted that recently
discrete quadratic solitons have been experimentally ob-
served in arrays of waveguides made in lithium niobate[15].
Such richness may be further enhanced by combining the
features of both continuous and discrete soliton families
present in spatiotemporal discrete solitons, a possibility that
we address here.

In the past two decades the concept of optical spatiotem-
poral solitons(STS’s), referred to as light bullets in the
three-dimensional case[16], has been attracting attention as
a unique opportunity to create a self-supporting fully local-
ized object. The existence of STS’s in quadratic nonlinear
materials was theoretically predicted[17] and thereafter ex-
perimentally realized in a two-dimensional geometry involv-
ing one temporal and one spatial coordinate[18]. The exis-
tence and properties of continuous-discrete spatiotemporal
solitons have been extensively investigated in cubic nonlin-
ear media and stable odd solitons have been shown to exist
[19–23]. It was shown that the cubic weakly-coupled wave-
guide arrays act as collapse compressors[19–21]. In contrast
with the cubic spatiotemporal solitons, the quadratic ones do

not display collapse in both two- and three-dimensional ge-
ometries[24]. A still open problem, not analyzed so far, is
the existence of space-time solitons in nonlinear waveguides
with quadratic nonlinearity, that is, the existence of discrete
spatiotemporal multicolor solitons.

In this paper we investigate in details the existence and
stability of three representative families of two-dimensional
spatiotemporal solitons in quadratic nonlinear waveguide ar-
rays. We assume, in addition to the temporal dispersion of
the pulse, the contribution of the discrete diffraction, that
arises because of the weak coupling between neighboring
waveguides.

Discrete soliton solutions were classified asstaggeredand
unstaggeredones (see, for example, Ref.[25]). The stag-
gered solutions display out-of-phase fields between the
neighbor noncentral waveguides whereas the unstaggered
ones display in-phase fields in these noncentral waveguides.
Inside each of these classes of solitons(staggered and un-
staggered) one can find solutions with different topologies,
dictated mainly by the energy and phase distribution in the
central waveguides. Thus, one can have(i) odd solitons, for
which most part of the energy is located in one central wave-
guide and the energy distribution across the waveguide array
is symmetric with respect to this central waveguide;(ii ) even
solitons, for which most part of the energy is equally distrib-
uted in the two central waveguides, the fields in these central
waveguides being in-phase and of equal amplitudes; and(iii )
twistedsolitons, for which most part of the energy is equally
distributed in the two central waveguides, but the fields in
the two central waveguides are out-of-phase.

Here we will restrict ourselves to three representative
families of continuous-discrete unstaggered solitons, namely
the odd soliton[see Fig. 1(a)], the even soliton[see Fig. 1(c)]
and the twisted soliton[see Fig. 1(d)]. Note that for the
twisted soliton, the fundamental frequency field is, in fact, an
antisymmetric one(thep jump of phase occurs only between
the two central waveguides), whereas the second harmonic
field is a symmetric one(having the form of an even discrete
soliton). For all the solutions we deal with, the temporal
profile, i.e., the shape of the pulses propagating in a specific
waveguide, is a bell-shaped symmetric one[see Fig. 1(b),
below]. Besides these stationary solutions, there exist a
whole “zoology” of localized solutions, including staggered
solitons, dark or dark-bright solitons, but their study is be-
yond the scope of the present work.
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II. MODEL AND STATIONARY SOLUTIONS

The evolution of the spatiotemporal two-component field
in quadratic nonlinear waveguide arrays in a degenerate
second-harmonic generation geometry may be described by
the following set of nonlinearly coupled reduced differential
equations:
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whereun andvn represent the normalized amplitudes of the
fundamental frequency(FF) and second-harmonic(SH)
fields in thenth waveguide, withn=−N, . . .−1,0,1, . . . ,N,
2N+1 being the number of waveguides, the asterisk denotes
complex conjugation,cu,v and g1,2 are the linear coupling
coefficients and group-velocity dispersion(GVD) coeffi-
cients, respectively, andb is the wave-vector mismatch. The
evolution variablej denotes the normalized propagation dis-
tance along the waveguides. The dynamical system(1) ad-
mits several conserved quantities including the energy flow
and Hamiltonian which read
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where we have definedAn;un, andBn;vn exps−ibjd. The
stationary solutions of Eqs.(1) have the form un
=Unstd expsib1jd andvn=Vnstd expsib2jd, whereUnstd and
Vnstd are real functions, andb1,2 are real propagation con-
stants verifying b2=2b1+b. Continuous-discrete solitons
arise from a balance between discrete diffraction, dispersion
and quadratic nonlinearity. The families of odd, even, and
twisted stationary continuous-discrete solitons have been ob-
tained numerically by a standard relaxation method. For
given coupling strengthscu,v, dispersionsg1,2 and wave-
vector mismatchb, the soliton families are parametrized by
the nonlinear wave number shiftb1. The coupling coeffi-
cientscu,v were considered positive, and equal, so further we
introduce single parameterC to describe coupling between
neighboring guiding sites. Throughout this paper we will al-
ways consider anomalous dispersions at both frequencies and
we fixedg1=−0.25 andg2=−0.5. Note that in the continuous
case, long-lived solitonlike propagation when the GVD is
slightly normal at SH is known to occur[26,27]; thus a simi-
lar behavior might occur in the continuous-discrete spa-
tiotemporal case analyzed here.

In Figs. 2(a) and 2(b) we show the dependencies of the
peak amplitudeAu and the temporal full width at half maxi-
mum of the pulse in the central waveguideWu as a function
of the coupling coefficientC for a fixed wave numberb1 at
phase matchingsb=0d. Note that with increase of coupling
strength amplitude of odd and even solitons monotonically
decreases and their width increases, whereas the amplitude
and width of the twisted solitons are the nonmonotonic func-
tion of C. This is illustrated also in Fig. 3 where profiles of
odd solitonsuUnstdu at two different coupling constants are
shown. Note that with increase of coupling constant soliton
covers more guiding sites, while atC→0 it is located prima-
rily in the central guiding site.

Similar to the two-dimensional(continuous-continuous)
solitons in uniform media, there exist cutoffbco of the non-
linear wave number shiftb1 depending on the sign and ab-
solute value of the mismatch parameterb. Moreover, as we
have an additional degree of freedom, namely the discrete
spatial coordinate, we have investigated the dependence of
the cutoff wave numberbco on the coupling coefficientC for
a given wave-vector mismatch. For a phase-matched geom-
etry sb=0d, we have obtained almost linear dependencies of
the cutoff wave number on the coupling coefficients for all
three families of solutions we deal with[see Fig. 2(c)]. Note
that cutoffs for odd and even solitons are equal. As a general
rule, the stronger the coupling, the larger the cutoff wave
numberbco. WhenC=0 we gotbco=0, thus recovering the
known result for the continuous quadratic solitons:bco
=maxh−b /2 ,0j.

FIG. 1. Amplitude profiles of the(a) odd, (c) even, and(d)
twisted solitons. Lines with circles show FF field; lines with hexa-
gons show SH field. In(b) the time slice in the central waveguide
sn=0d for odd soliton is shown. Even and twisted solitons feature
the similar temporal profile. HereC=0.1, b1=3, andb=3.
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We also have investigated the peak amplitude and the
temporal width in the central waveguide for odd, even and
twisted continuous-discrete solitons as functions of the
wave-vector mismatch for fixed nonlinear wave number shift
b1 and linear coupling coefficientC. The solitons that form at
larger phase mismatches have larger amplitudes and are nar-
rower than those forming at smaller phase mismatches. This
feature was observed for one- and two-dimensional continu-
ous solitons in quadratic media for which at phase matching
the productspeak amplituded3 swidth2d is a constant quan-
tity [28]. In Fig. 2(d) we plot the amplitude of the stationary
odd soliton as function of its temporal width. We see that
outside phase-matching the families of solitons exhibit a
more complicated amplitude-width relationship, similar to

the case of continuous quadratic solitons[28]. The scaling
properties of Eqs.(1) can be written as

un = cũn, vn = cṽn, b1 = cb̃1,

b = cb̃, t = c−1/2t̃, I = c3/2Ĩ , s4d

wherec being the scaling parameter.
In Figs. 4(a)–4(f) we have represented the dependencies

energy flow I–wave numberb1 (left column) and Hamil-
tonianH–energy flowI (right column) that give us a deeper
insight into the properties of continuous-discrete soliton
families. One can see that odd solitons realize the minimum
of Hamiltonian for a given energy flow, thus they are ex-
pected to be the most robust on propagation. The Peierls-
Nabarro potential, that is the difference between Hamiltonian
of the odd soliton and that of the even one[29], correspond-
ing to the same energy flow, is negative everywhere. From a
geometrical point of view, this would mean that odd solitons
are stable in the entire domain of their existence[30]. Our
numerical simulations, described in detail in the next section,
show that, indeed, this is the case except for solitons at nega-
tive phase mismatches that are unstable only in a narrow
region near cutoff[see Fig. 5(a)] [28,31].

FIG. 2. (a) Peak amplitude and(b) temporal width of FF wave
in the central waveguide for odd, even, and twisted solitons versus
coupling coefficient atb1=3 and b=0. (c) Wave number cutoff
versus coupling coefficient atb=0. The symbols “o,” “ e,” and “t”
stand for the odd, even, and twisted solitons, respectively.(d) FF
wave amplitude versus temporal width in the central waveguide for
odd soliton atC=0.1 and different phase mismatches. Only stable
branch has been plotted for negativeb.

FIG. 3. Profiles of odd solitons for(a) C=0.5 and(b) C=1 at
b1=3, b=0. Only the modulus of the amplitude of the FF wave is
shown. The SH shows similar features.

FIG. 4. Energy flow versus wave number and Hamiltonian ver-
sus energy flow for odd, even, and twisted solitons at three repre-
sentative values of phase mismatch andC=0.1. The labels are the
same as in Figs. 2.
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III. STABILITY ANALYSIS

A key issue concerning the soliton families we found is
their stability on propagation. In order to elucidate if the
localized continuous-discrete solitons are dynamically stable
we have performed both a linear stability analysis and direct
numerical simulations. We seek for perturbed solution of Eq.
(1) in the form

unst,jd = fUnstd + mfnst,jdgexpsib1jd,

vnst,jd = fVnstd + mhnst,jdgexpfis2b1 + bdjg. s5d

Herem is a small parameter,Unstd andVnstd are the station-
ary solutions andfnst ,jd and hnst ,jd are the perturbations.
Then after linearizing the evolution equations(1) we are left
with a system of linear coupled differential equations for the
perturbations(see, e.g., Ref.[32]):

i
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2

]2fn

] t2 − sUn
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i
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]2hn

] t2 − 2Unfn + s2b1 + bdhn.

s6d

We have solved both this linear system and the nonlinear
dynamical equations(1) with a combined fast-Fourier trans-
form, to deal with the linear differential part in the temporal
coordinate, and a fourth-order Runge-Kutta method, to deal
with the cross-coupling terms. We have typically used 512 or
1024 points in the time domain and we have considered tens
of array sites(e.g., 61), depending on the width of the solu-
tion whose stability is investigated. The step length along the
propagation coordinate was of the order of 10−3. The accu-
racy of the results was checked by doubling the number of

points in the transverse coordinate and by halving the propa-
gation step. As another check for the evolution equations(1)
we have verified the conservation of the prime integrals(en-
ergy flow I and HamiltonianH). In order to let the radiation
to escape from the computation window we have imple-
mented transparent(absorbing) boundary conditions.

We have determined the dominant eigenvalued of the
linearized problem using the same approach as in Ref.[32].
The method gives us only the dominant eigenvalue, not the
whole eigenvalue spectrum. This eigenvalue corresponds to
the most rapidly(exponentially) developing instability. The
noisy perturbation we consider atj=0 develops, during evo-
lution, to a localized eigenvector with a well defined symme-
try, depending on the type of the solution considered. In the
cases where an instability was detected, only real instability
eigenvalues were found. The dominant eigenvalue was cal-
culated in the form

Resdd =
1

2Dj
logHSo

n
E

−`

`

fufnst,j + Djdu2

+ uhnst,j + Djdu2gdtD
3So

n
E

−`

`

fufnst,jdu2 + uhnst,jdu2gdtD–1J . s7d

This dominant eigenvalue tends to zero when one ap-
proaches the stability region. The results we got for the
growth rate calculations at negative phase mismatch
sb=−3d are summarized in Fig. 5. They indicate instability
for even and twisted solitons[10] and a stability region for
odd solitons which starts atb1

stab<1.725. This result is in
good agreement with the direct simulations of evolution Eq.
(1). For positive wave-vector mismatches or at phase-
matching the growth rate calculations indicate instability for
even and twisted solitons and complete stability for odd soli-
tons.

Our calculations show that odd continuous-discrete soli-
tons obey the Vakhitov-Kolokolov stability criterion[33],
i.e., they are stable provideddI /db1.0, and unstable, other-
wise. The Vakhitov-Kolokolov criterion was shown also to
hold for discrete space-time solitons that exist in Kerr non-
linear media [22,23]. Moreover, the unstable odd cubic
continuous-discrete solitons can display collapse-type insta-
bilities, a reminiscent feature of the two-dimensional station-
ary solutions of nonlinear Schrödinger equation, while the
unstable quadratic discrete space-time odd solitons do not
display this type of instability[24].

Let us stress that as compared to the one-dimensional dis-
crete twisted solitons forming in quadratic media that can be
stable in specific parameter regions, in our case, the intro-
duction of a time coordinate leads to the destabilization of
these solutions. However, one of the central points of this
work is that we found families of stable odd continuous-
discrete multicolor solitons. As illustrated in Fig. 6(b), stable
odd solitons can propagate for huge distances without alter-
ing their shape and eliminating the added random white
noise during evolution. The case shown here corresponds to

FIG. 5. Growth rate versus wave number for(a) odd, (b) even,
and (c) twisted solitons atb=−3 andC=0.1.
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negative wave-vector mismatchb=−3 but similar stable
evolution has been obtained for positive mismatches and
phase-matching geometries except for odd solitons from the
branch wheredI /db1,0, which are unstable and will there-
fore decay after a finite propagation distance[see Fig. 6(a)].

In addition, we also thoroughly investigated the decay
scenarios of the other two types of solitons: even and
twisted. As stated before we have not observed any stable
even or twisted continuous-discrete soliton. Figure 7 shows
possible instability scenarios for unstaggered even and un-
staggered twisted solitons. We have found that a perturbed
even soliton typically tranforms into an odd one through in-
creasing field oscillation in neighboring waveguides[Fig.
7(a)], and perturbed twisted soliton usually splits into two
solitons which fly apart as when a repulsive force would act
between them[Fig. 7(b)]. We have observed ap phase dif-
ference between the formed odd solitons and this could ex-
plain the repulsive force between them. Note that during the
splitting process the resulting odd solitons are still locked in
a specific waveguide, but they are allowed to repel in time.
This unique feature comes with discreteness which does not
allow the soliton energy to escape from the waveguide where
it was initially located.

IV. CONCLUSION

We have shown that stable, spatiotemporal continuous-
discrete solitons are possible in quadratic nonlinear wave-
guide arrays. Families of unstaggered odd, even and twisted
stationary solutions have been found and thoroughly charac-
terized. The linear stability analysis is in agreement with the
direct simulations indicating that the odd continuous-discrete
solitons obey the Vakhitov-Kolokolov stability criterion. The
salient point put forward is that most of the spatiotemporal
unstaggered odd solitons are stable against perturbations.
This result is important in view of the generation of discrete
solitons with pulsed light in the context of the exploration of
their potential application to switching schemes[7–9].
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FIG. 6. (a) Propagation of unstable odd soliton corresponding to
b1=1.65 in the presence of small perturbation found upon linear
stability analysis. Perturbation amplitudem=0.01. (b) Propagation
of stable odd soliton atb1=1.735 in the presence of white noise
with variancesnoise

2 =0.01. Only the modulus of the amplitude of
the SH wave is shown, at different propagation distances. Plots in
left and right columns are shown with the same scale for easier
comparison. Phase mismatchb=−3 and coupling constantC=0.1.

FIG. 7. Propagation of unstable even(a) and twisted(b) solitons
corresponding tob1=3 in the presence of small perturbations found
upon the linear stability analysis. Perturbation amplitudem=0.01.
Only the modulus of the amplitude of the SH wave is shown, at
different propagation distances. Plots in left and right columns are
shown with the same scale for easier comparison. Phase mismatch
b=−3 and coupling constantC=0.1.
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