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Spatiotemporal discrete multicolor solitons
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We have found various families of two-dimensional spatiotemporal solitons in quadratically nonlinear wave-
guide arrays. The families of unstaggered odd, even, and twisted stationary solutions are thoroughly charac-
terized and their stability against perturbations is investigated. We show that the twisted and even solitons
display instability, while most of the odd solitons show remarkable stability upon evolution.
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I. INTRODUCTION not display collapse in both two- and three-dimensional ge-
) o ) ) ) ometries[24]. A still open problem, not analyzed so far, is

Since their first experimental observati¢h], quadratic  the existence of space-time solitons in nonlinear waveguides
solitons have been demonstrated in a variety of materials anglith quadratic nonlinearity, that is, the existence of discrete
geometries. Spatial, temporal, and spatiotemporal solitons igpatiotemporal multicolor solitons.
quadratic media have been extensively investigated both ex- In this paper we investigate in details the existence and
perimentally and theoreticallyfor detailed reviews, see stability of three representative families of two-dimensional
[2-5]). Quadratic solitons also exist in the form of discrete spatiotemporal solitons in quadratic nonlinear waveguide ar-
entities, namely strongly localized wave packets forming inrays. We assume, in addition to the temporal dispersion of
nonlinear waveguide arrays. Since their theoretical predicthe pulse, the contribution of the discrete diffraction, that
tion in 1988 in cubic nonlinear medigg], discrete optical ~arises because of the weak coupling between neighboring
solitons have attracted a steadily growing interest because gfaveguides. ] N
their potential applications in switching and routing devices Discrete soliton solutions were classifiedsasggeredand
[7-9]. The discrete solitons that form in tight-coupled wave-Unstaggeredones (see, for example, Re{25]). The stag-
guide arrays made of quadratic nonlinear media have beedf'®d solutions display out-of-phase fields between the
comprehensively investigatéti0—14 due to the rich variety neighbor noncentral waveguides whereas the unstaggered

of effects that are possible with them. It is noted that recenthPn€S diSplay in-phase fields in these noncentral waveguides.

discrete quadratic solitons have been experimentally obl_n3|de each of these classes of solitgataggered and un-

served in arrays of waveguides made in lithium niokja. staggeregione can find solutions with different topologies,
Such richness may be further enhanced by combining th
features of both continuous and discrete soliton familie
present in spatiotemporal discrete solitons, a possibility th
we address here.

In the past two decades the concept of optical spatiote
poral solitons(STS’9, referred to as light bullets in the
three-dimensional cagd6], has been attracting attention as
a unigue opportunity to create a self-supporting fully local-
ized object. The existence of STS’s in quadratic nonlinea
materials was theoretically predict¢ti7] and thereafter ex-
perimentally realized in a two-dimensional geometry involv-
ing one temporal and one spatial coordinglt8]. The exis-

dictated mainly by the energy and phase distribution in the
Eentral waveguides. Thus, one can héyeodd solitons, for
Swhich most part of the energy is located in one central wave-
aﬂ)uide and the energy distribution across the waveguide array
is symmetric with respect to this central waveguide;even
Molitons, for which most part of the energy is equally distrib-
uted in the two central waveguides, the fields in these central
waveguides being in-phase and of equal amplitudesyiand
twistedsolitons, for which most part of the energy is equally
Bistributed in the two central waveguides, but the fields in
the two central waveguides are out-of-phase.
Here we will restrict ourselves to three representative

d : f : di : families of continuous-discrete unstaggered solitons, namely
tence and properties of continuous-discrete spatiotemporghe oqq solitor{see Fig. 1a)], the even solitoifisee Fig. 1c)]
solitons have been extensively investigated in cubic nonlin

di d stable odd soli h b h .and the twisted solitorjsee Fig. 1d)]. Note that for the
ear r;e 'a an s:]a € oh Sr? |tonz_ ave k:aen S ?V‘(’jn 10 eXigisted soliton, the fundamental frequency field is, in fact, an
[19-23. It was shown that the cubic weakly-coupled wave- sy mmetric ongthe 7 jump of phase occurs only between
guide arrays act as collapse compres$b®s-21]. In contrast

: . : ! : the two central waveguidgswhereas the second harmonic
with the cubic spatiotemporal solitons, the quadratic ones dﬂeld is a symmetric onéhaving the form of an even discrete

soliton). For all the solutions we deal with, the temporal
profile, i.e., the shape of the pulses propagating in a specific
*Electronic address: Xu.Zhiyong@upc.es waveguide, is a bell-shaped symmetric dsee Fig. 1b),
TAlso with the Physics Department, M. V. Lomonosov Moscow below]. Besides these stationary solutions, there exist a
State University, Moscow, Russia. whole “zoology” of localized solutions, including staggered
*Permanent address: Institute of Atomic Physics, Department o$olitons, dark or dark-bright solitons, but their study is be-
Theoretical Physics, P.O. Box MG-6, Bucharest, Romania. yond the scope of the present work.
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time 7 where we have definel,=u,, andB,=v, exp(-iB¢). The
11 stationary solutions of Egs.(1) have the form u,
(d) =U,(7) exp(ib;&) andv,=V,(7) exp(ib,g), whereU,(7) and
o o Vy(7) are real functions, anb, , are real propagation con-
% % 0 stants verifying b,=2b;+3. Continuous-discrete solitons
= 3 arise from a balance between discrete diffraction, dispersion
and quadratic nonlinearity. The families of odd, even, and
twisted stationary continuous-discrete solitons have been ob-
-11 A Raaas. tained numerically by a standard relaxation method. For

) 2o 02 given coupling strengths,,, dispersionsg; , and wave-
guide n guide n vector mismatchg, the soliton families are parametrized by
the nonlinear wave number shift;. The coupling coeffi-
cientsc,, were considered positive, and equal, so further we
introduce single parameteé® to describe coupling between
neighboring guiding sites. Throughout this paper we will al-
ways consider anomalous dispersions at both frequencies and
we fixedg,;=-0.25 andg,=-0.5. Note that in the continuous
case, long-lived solitonlike propagation when the GVD is
slightly normal at SH is known to occ(i26,27]; thus a simi-

The evolution of the spatiotemporal two-component ﬁeldl‘.”lr behavior might occur in the continuous-discrete spa-
tiotemporal case analyzed here.

in quadratic nonlinear waveguide arrays in a degenerate ! .

second-harmonic generation geometry may be described b e;nk I:nqns.liti?j) e:l ngnﬁk?h\évfersnhog\rghfif \svliaciﬂdaetnﬁ;elf rﬁ;;:je

the following set of nonlinearly coupled reduced differential P u - P .
mum of the pulse in the central waveguidg as a function

FIG. 1. Amplitude profiles of thga) odd, (c) even, and(d)
twisted solitons. Lines with circles show FF field; lines with hexa-
gons show SH field. Irib) the time slice in the central waveguide
(n=0) for odd soliton is shown. Even and twisted solitons feature
the similar temporal profile. Her€=0.1,b;=3, andB=3.

II. MODEL AND STATIONARY SOLUTIONS

equations: of the coupling coefficien€ for a fixed wave numbelb, at
phase matchingB=0). Note that with increase of coupling
auy, O, AU, . _ strength amplitude of odd and even solitons monotonically
I == Cy(Up-1+ Ups) + = Uy, eXp—iBé), decreases and their width increases, whereas the amplitude
JE 2 97 ; : . )
and width of the twisted solitons are the nonmonotonic func-
tion of C. This is illustrated also in Fig. 3 where profiles of
2 odd solitons|U,(7)| at two different coupling constants are
.dup 9290 ; shown. Note that with increase of coupling constant soliton
i— =-c,(vp—1 t+ + = —uyexpipsd, (1 ' s . . s -
9 oUn-1+Unet) 5775 ~Uh @XRIAD), (D ers more guiding sites, while @0 it is located prima-

rily in the central guiding site.

. ) Similar to the two-dimensionalcontinuous-continuoys
whereu, andv, represent the normalized amplitudes of thegq|itons in uniform media, there exist cutdgf, of the non-
fundamental frequencyFF) and second-harmoni¢SH)  jinear wave number shifb; depending on the sign and ab-
fields in thenth waveguide, withn=-N,...-1,0,1,...N,  splute value of the mismatch paramegrMoreover, as we
2N+1 being the number of waveguides, the asterisk denotegaye an additional degree of freedom, namely the discrete
complex conjugationg,, and g, , are the linear coupling gpatial coordinate, we have investigated the dependence of
coefficients and group-velocity dispersidiGVD) coeffi-  the cutoff wave numbeln,, on the coupling coefficiert for
cients, respectively, and is the wave-vector mismatch. The 4 given wave-vector mismatch. For a phase-matched geom-

evolution variablet denotgs the normalized_ propagation dis‘etry (8=0), we have obtained almost linear dependencies of

tance along the waveguides. The dynamical systmad- e cytoff wave number on the coupling coefficients for all

mits seve_ral (_:onser\_/ed quantities including the energy flowh ee families of solutions we deal wifsee Fig. 2c)]. Note

and Hamiltonian which read that cutoffs for odd and even solitons are equal. As a general
rule, the stronger the coupling, the larger the cutoff wave
numberb,,, WhenC=0 we gotb.,=0, thus recovering the

I :E f(|An|2+ |Bn|2)d7, (2) known result for the continuous quadratic solitors;,
n =max-p/2,0}.
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FIG. 2. (a) Peak amplitude an¢b) temporal width of FF wave
in the central waveguide for odd, even, and twisted solitons versus
coupling coefficient at;=3 and f=0. (c) Wave number cutoff
versus coupling coefficient @=0. The symbols ¢,” “e,” and “t”
stand for the odd, even, and twisted solitons, respectivd)yFF
wave amplitude versus temporal width in the central waveguide for
odd soliton atC=0.1 and different phase mismatches. Only stable
branch has been plotted for negatjge

We also have investigated the peak amplitude and the
temporal width in the central waveguide for odd, even and o
twisted continuous-discrete solitons as functions of the FIC- 4. Energy flow versus wave number and Hamiltonian ver-
wave-vector mismatch for fixed nonlinear wave number shift!'S energy flow for odd, even, and twisted solitons at three repre-
b; and linear coupling coefficier@. The solitons that form at zznmt:tg/: i\r/]a::lfe: c;f phase mismatch &wl0.1. The labels are the
larger phase mismatches have larger amplitudes and are nar- gs. &
rower than those forming at smaller phase mismatches. This . ) i )
feature was observed for one- and two-dimensional continuthe case of continuous quadratic solitd28]. The scaling
ous solitons in quadratic media for which at phase matchingroperties of Eqs(1) can be written as
the product(peak amplitudex (width?) is a constant quan- ~ - ~
tity [28]. In Fig. 2d) we plot the amplitude of the stationary Un =, U= vn, by =y,
odd _soliton as functic_m of its temporal Width. We see that B= zﬁ%, =y V%, | = ws/éf, (4)
outside phase-matching the families of solitons exhibit a
more complicated amplitude-width relationship, similar towhere being the scaling parameter.

In Figs. 4a)-4(f) we have represented the dependencies
energy flowl-wave numberb, (left column and Hamil-
tonianH—energy flowl (right columr) that give us a deeper
insight into the properties of continuous-discrete soliton
families. One can see that odd solitons realize the minimum
of Hamiltonian for a given energy flow, thus they are ex-
pected to be the most robust on propagation. The Peierls-
Nabarro potential, that is the difference between Hamiltonian
of the odd soliton and that of the even di29], correspond-
ing to the same energy flow, is negative everywhere. From a
geometrical point of view, this would mean that odd solitons
are stable in the entire domain of their existeri8g]. Our
numerical simulations, described in detail in the next section,

FIG. 3. Profiles of odd solitons fa@) C=0.5 and(b) C=1 at  Show that, indeed, this is the case except for solitons at nega-
b,=3, B=0. Only the modulus of the amplitude of the FF wave is tive phase mismatches that are unstable only in a narrow
shown. The SH shows similar features. region near cutoffsee Fig. 5a)] [28,31].
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0.6 21 points in the transverse coordinate and by halving the propa-
(a) (b) gation step. As another check for the evolution equat{dips
1.4] we have verified the conservation of the prime integfais
ergy flow!| and HamiltoniarH). In order to let the radiation
to escape from the computation window we have imple-
mented transparetiabsorbing boundary conditions.

We have determined the dominant eigenvaluef the
linearized problem using the same approach as in [Bé&f.
The method gives us only the dominant eigenvalue, not the
whole eigenvalue spectrum. This eigenvalue corresponds to
11 the most rapidly(exponentially developing instability. The
noisy perturbation we consider &0 develops, during evo-
lution, to a localized eigenvector with a well defined symme-
=" try, depending on the type of the solution considered. In the
cases where an instability was detected, only real instability
0.7 eigenvalues were found. The dominant eigenvalue was cal-

culated in the form

(c)

. 0.4]

Re(6)
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T
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FIG. 5. Growth rate versus wave number fay odd, (b) even,
and(c) twisted solitons a3=-3 andC=0.1. +|hy(r,é+ A§)|*ldT

IIl. STABILITY ANALYSIS

0 -1
X(E j_ [Ifn(T,§)|2+|hn(T,§)|2]dT> } (7)

A key issue concerning the soliton families we found is
their stability on propagation. In order to elucidate if the This dominant ei lue tends t h i
localized continuous-discrete solitons are dynamically stable IS dominant eigenvalue tends to zero when one ap
we have performed both a linear stability analysis and direcproaches the stability region. The results we got for the

numerical simulations. We seek for perturbed solution of Eq.grOWth rate calculgtlon_s at negative phase . m'Sm"’.‘tCh
(1) in the form (B=-3) are summarized in Fig. 5. They indicate instability

for even and twisted solitond 0] and a stability region for
Uy(7,8) =[Up(7) + uf (7, &) ]expibié), odd solitons which starts dt®°~1.725. This result is in
good agreement with the direct simulations of evolution Eq.
vo(1, &) = [V, (1) + uh,(7,€)]exdi(2b, + B)E]. (5) (1). For positive wave-vector mismatches or at phase-
matching the growth rate calculations indicate instability for

Here w is a small parametet) () andV,(7) are the station-  eyen and twisted solitons and complete stability for odd soli-
ary solutions and (7, ) andh,(7,&) are the perturbations. gns.

Then after linearizing the evolution equatiofiy we are left Our calculations show that odd continuous-discrete soli-
with a system of linear coupled differential equations for thetons obey the Vakhitov-Kolokolov stability criteriof83],
perturbationgsee, e.g., Ref32)): i.e., they are stable provideti/db, >0, and unstable, other-
of gy f wise. The Vakhitov-Kolokolov criterion was shown also to
i—2 = = Cy(frog + Fret) + = —2 = (Ubhy + Vifo) + by, hold for discrete space-time solitons that exist in Kerr non-
I¢& 297 linear media[22,23. Moreover, the unstable odd cubic
2n continuous-discrete solitons can display collapse-type insta-
Al 920Ny bilities, a reminiscent feature of the two-dimensional station-
! 9 ColPn-1+ Pne) 2 972 2Unfn + (201 + By ary solutions of nonlinear Schrédinger equation, while the

6) unstable quadratic discrete space-time odd solitons do not
display this type of instability24].

We have solved both this linear system and the nonlinear Let us stress that as compared to the one-dimensional dis-
dynamical equationél) with a combined fast-Fourier trans- crete twisted solitons forming in quadratic media that can be
form, to deal with the linear differential part in the temporal stable in specific parameter regions, in our case, the intro-
coordinate, and a fourth-order Runge-Kutta method, to dealuction of a time coordinate leads to the destabilization of
with the cross-coupling terms. We have typically used 512 othese solutions. However, one of the central points of this
1024 points in the time domain and we have considered tensork is that we found families of stable odd continuous-
of array siteqe.g., 63, depending on the width of the solu- discrete multicolor solitons. As illustrated in Figlby, stable
tion whose stability is investigated. The step length along the@dd solitons can propagate for huge distances without alter-
propagation coordinate was of the order of 3l0rhe accu- ing their shape and eliminating the added random white
racy of the results was checked by doubling the number ofoise during evolution. The case shown here corresponds to
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FIG. 6. (a) Propagation of unstable odd soliton corresponding to
b;=1.65 in the presence of small perturbation found upon linear
stability analysis. Perturbation amplituge=0.01.(b) Propagation FIG. 7. Propagation of unstable even and twistedb) solitons
of stable odd soliton ab;=1.735 in the presence of white noise corresponding td,; =3 in the presence of small perturbations found
with variancea? ;=0.01. Only the modulus of the amplitude of upon the linear stability analysis. Perturbation amplitycde0.01.
the SH wave is shown, at different propagation distances. Plots i®nly the modulus of the amplitude of the SH wave is shown, at
left and right columns are shown with the same scale for easieflifferent propagation distances. Plots in left and right columns are
comparison. Phase mismat@+-3 and coupling constai@=0.1. shown with the same scale for easier comparison. Phase mismatch

B=-3 and coupling constar@=0.1.

negative wave-vector mismatcB=-3 but similar stable

evolution has been obtained for positive mismatches and

phase-matching geometries except for odd solitons from the IV. CONCLUSION

branch wherall/db; <0, which are unstable and will there- . .

fore decay after a finite propagation distarisee Fig. 63)]. ) We have_ shown that s’gable_, spaﬂoter_nporal continuous-
In addition, we also thoroughly investigated the decaydls_crete solitons are possible in quadratic nonlinear wave-

scenarios of the other two types of solitons: even ancguuje arrays. Ffamlhes of unstaggered odd, even and twisted

twisted. As stated before we have not observed any stabffationary solutions have been found and thoroughly charac-

even or twisted continuous-discrete soliton. Figure 7 showiz,i?flzed-'The Il'near. St:'?lblll'ty analysis is in agreement w!th the

possible instability scenarios for unstaggered even and urflirect simulations indicating that the odd continuous-discrete

staggered twisted solitons. We have found that a perturbeglitons obey the Vakhitov-Kolokolov stability criterion. The

even soliton typically tranforms into an odd one through in-Salient point put forward is that most of the spatiotemporal

creasing field oscillation in neighboring waveguidgsg. ~ Unstaggered odd solitons are stable against perturbations.

7(a)], and perturbed twisted soliton usually splits into two This result is important in view of the generation of discrete

solitons which fly apart as when a repulsive force would acg0litons with pulsed light in the context of the exploration of

between thenjFig. 7(b)]. We have observed a phase dif- their potential application to switching scheni@s9.

ference between the formed odd solitons and this could ex-

pla_in_ the repulsive force bgtween them. Note tha_t during the ACKNOWLEDGMENTS

splitting process the resulting odd solitons are still locked in
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